Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist: a functional role for receptor-receptor interaction in vivo.

نویسندگان

  • Liza Barki-Harrington
  • Louis M Luttrell
  • Howard A Rockman
چکیده

BACKGROUND Although the renin-angiotensin and the beta-adrenergic systems are interrelated, a direct interaction between beta-adrenergic receptors (betaARs) and angiotensin II type 1 receptors (AT1Rs) has not been identified. METHODS AND RESULTS Here, we provide evidence for a functional and physiological interaction between 2 G protein-coupled receptors: the betaAR and the AT1R. Selective blockade of betaARs in mouse cardiomyocytes inhibits angiotensin-induced contractility with an IC50 that is similar to its inhibition of isoproterenol-mediated contractility. Furthermore, administration of the angiotensin receptor blocker valsartan to intact mice results in a significant reduction in the maximal response to catecholamine-induced elevation of heart rate. The mechanism for this transinhibitory effect of beta-blockers and angiotensin receptor blockers is through receptor-G protein uncoupling; ie, beta-blockers interfere with AT1R-Gq coupling, and valsartan interferes with betaAR-Gs coupling. Finally, we demonstrate that AT1Rs and betaARs form constitutive complexes that are not affected by ligand stimulation. As a result of these interactions, a single receptor antagonist effectively blocks downstream signaling and trafficking of both receptors simultaneously. CONCLUSIONS We show that direct interactions between betaARs and AT1Rs may have profound consequences on the overall response to drugs that antagonize these receptors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of Mas receptor antagonist (A779) and renal perfusion pressure on serum nitrite concentration in male and female rats when angiotensin II receptors 1 & 2 were blocked

Introduction: Renin angiotensin system has an important role in blood pressure and renal functions. Active angiotensin-converting enzyme 2 converts angiotensin I into angiotensin-(1-7) which is a vasodilator hormone and interacts with nitric oxide changes as well as other angiotensin II receptors. In this study we evaluated the role of Mas receptor antagonist (A779) and renal perfusion press...

متن کامل

COVID-19: a hypothesis to prevent SARS-CoV-2 from entering respiratory cells

Coronaviruses (CoVs) are a group of viruses that induce infection in the respiratory and other systems in the human body. There are two coronaviruses that transmitted from animals to humans including severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) (1). The novel coronavirus that appeared at first in Wuhan, China, in December 2019 was named as severe acut...

متن کامل

Effect of Angiotensin II on Blood Flow in Acute and Chronically Inflamed Knee Joints of Rabbits: The Role of Nitric Oxide

Background: Angiotensin converting enzyme (ACE) upregulation in stromal cells of joints affected by rheumatoid arthritis may lead to higher tissue angiotensin II that is a vasoconstrictor and mitogen factor. To date, the role of angiotensin II on regulating blood flow in inflamed joints has not been studied. Methods: Acute and chronic joint inflammation was induced in rabbits by intra-articular...

متن کامل

Suvorexant, a dual orexin receptor antagonist, protected seizure through interaction with GABAA and glutamate receptors

Orexin can increase neuronal excitability and induce epileptic activity. In this study, the effects of suvorexant (orexin receptor antagonist) on pentylenetetrazol (PTZ) and maximal electroshock (MES)-induced seizure were investigated. Mice were divided into 5 groups of six animals each including normal saline (10 ml/kg), diazepam (2 mg/kg) and suvorexant (50, 100 and 200 mg/kg) groups. In PTZ ...

متن کامل

The Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review

Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 108 13  شماره 

صفحات  -

تاریخ انتشار 2003